Ir al contenido principal

The jobs we will lose to machines and the ones we won


Machine learning isn't just for simple tasks like assessing credit risk and sorting mail anymore -- today, it's capable of far more complex applications, like grading essays and diagnosing diseases. With these advances comes an uneasy question: Will a robot do your job in the future?

Anthony Goldbloom: Machine learning expert

Anthony Goldbloom is the co-founder and CEO of Kaggle. Kaggle hosts machine learning competitions, where data scientists download data and upload solutions to difficult problems. Kaggle has a community of over 600,000 data scientists and has worked with companies ranging Facebook to GE on problems ranging from predicting friendships to flight arrival times.

Before Kaggle, Anthony worked as an econometrician at the Reserve Bank of Australia, and before that the Australian Treasury. In 2011 and 2012, Forbes named Anthony one of the 30 under 30 in technology; in 2013 the MIT Tech Review named him one of top 35 innovators under the age of 35, and the University of Melbourne awarded him an Alumni of Distinction Award. He holds a first call honors degree in Econometrics from the University of Melbourne.  

  • 2013 Oxford hizo un estudio, 1 de cada 2 trabajos tienes altos riesgos de ser automatizados por maquinas.


  • Machine learning empezó en los 90 con la evaluación de riesgos de crédito en solicitudes de préstamo, o clasificación de correos entendiendo la letra escrita a mano.


  • Ahora puede Diagnosticar enfermedades, evaluar ensayos. Los humanos podremos leer 10,000 ensayos durante 40 anos o evaluar 50,000 ojos para diagnosticar enfermedades. Una máquina puede hacer millones. Nos vencen en tareas frecuentes y de gran volumen.


  • Las maquinas no pueden manejar cosas que no han visto muchas cosas antes. Necesitan aprender con grandes cantidades de data histórica.


  • Los humanos podemos conectar nuevos problemas con cosas que ya sabemos para soluciones creativas.


  • Nuevas situaciones será liderada por humanos, las repetitivas por las maquinas.


Source:
https://www.ted.com/talks/anthony_goldbloom_the_jobs_we_ll_lose_to_machines_and_the_ones_we_won_t?language=es

Comentarios

Entradas populares de este blog

CÓMO PENSAMOS, DECIDIMOS Y APRENDEMOS

  MARIANO SIGMAN, NEUROCIENTÍFICO Argentino, estudió física y matemática y luego hizo un doctorado en neurociencia en Estados Unidos. ·          Jorge Luis Borges tenía un cuento donde había una persona que se dedicaba a tener buenos sueños. Lo que hacía durante el día era un trabajo para tener una buena noche. ·          El ser humano para realmente sentir la experiencia de algo tiene que compartirla con alguien. ·          Metacognición: conocer aquello que realmente conozco. ·          Teoría de la mente: conocer lo que la otra persona sabe y lo que no sabe. ·          El aprendizaje no tiene tanto que ver con adquirir conocimiento externo sino con reordenar el conocimiento que uno ya tiene. Es decir, aprender que es importante, que debo vincular con que, de toda la inform...

North to Paradise: A Memoir

  North to Paradise: A Memoir Umar, Ousman When we started out , there were forty - six of us . Only six survived . I always ate as much as I could because I knew it might be days before I’d have another meal . I was a twelve - year - old kid living in a no - man’s - land between the port , the cement factory , and the fishing harbor . “ They’ve found trucks in the desert with eighty bodies around them , ” I overheard as I watched them loading the convoys . The smugglers ’ cruel business consisted of promising to bring people across the Sahara , collecting their fees , and then abandoning them in the middle of nowhere . Murder on a massive scale . Abandoned At one point , we found a drinking well for goats : the water was contaminated with their excrement , but we drank it anyway . Considering the things we ate and drank , I don’t know how we never got sick . The difference in temperature between day and night was brutal : we practically melted during the day , when it was over 120...

DINERO: DOMINA EL JUEGO

  DINERO: DOMINA EL JUEGO TONY ROBINS Es  escritor  de libros de  desarrollo personal , finanzas personales y orador motivacional  estadounidense . Una empresa de HFT se gastó 250 millones usd tendiendo cables entre Chicago y Nueva York con tal de reducir en 1,4 milisegundos el tiempo de transacción, hay trades que se realizan en millonésimas de segundo. Pronto será en nanosegundos, o sea en mil millonésimas de segundo. Se habla de drones que funcionarán con energía solar y conectarán las bolsas de Nueva York y Londres. “Me hizo recordar los días en los que, sin techo, dormía en mi auto y buscaba la manera de cambiar mi vida, ¿cómo lo hice? Con libros, los libros me ayudaron a salir adelante, yo siempre he sido un lector voraz. De joven me propuse leerme un libro al día. No leía un libro al día, pero en siete años leí más de setecientos en busca de respuestas que me ayudaran a mí y a los demás; libros de sicología, de organización del tiempo, historia, filo...